Exam — Introduction to Optimization (WBMA054-05)

Friday, November 10, 2023, 08.30h-10.30h CET

University of Groningen

Instructions

- 1. Except for the official *cheat sheet*, the use of books or notes is not allowed.
- 2. Justify all your answers.
- 3. Write both your last name and student number on the answer sheets.
- 4. Each question is worth 1 point. Question 10 is optional.
- 1. Let $\phi : \mathbb{R}^K \to \mathbb{R} \cup \{+\infty\}$ be closed and μ -strongly convex. Use the Reciprocity formula to show why ϕ^* (the Fenchel conjugate of ϕ) must be $\frac{1}{\mu}$ -smooth.

Take $z_1^* \in \partial \phi(z_1)$ and $z_2^* \in \partial \phi(z_2)$. By strong convexity, we have

$$(z_1^* - z_2^*) \cdot (z_1 - z_2) \ge \mu ||z_1 - z_2||^2.$$

The reciprocity formula says that $z_i \in \partial \phi^*(z_i^*)$, i = 1, 2. The Cauchy-Schwarz inequality gives $\mu \|z_1 - z_2\| \le \|z_1^* - z_2^*\|$, which implies $\partial \phi^*(z_i^*) = \{z_i\}$, whence $\nabla \phi^*(z_i^*) = z_i$. It follows that $\|\nabla \phi^*(z_1^*) - \nabla \phi^*(z_2^*)\| \le \frac{1}{\mu} \|z_1 - z_2\|$, as we wanted.

In all that follows, we consider the problem (\mathcal{P}) of minimizing a continuous and μ -strongly convex function $f: \mathbb{R}^N \to \mathbb{R}$ on $V = \{x \in \mathbb{R}^N : Ax = b\}$, where $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^M$.

- 2. Why can we assure that problem (\mathcal{P}) has a unique solution? The problem is to minimize $f + \iota_V$, which is closed (sum of closed and continuous) and strongly convex (sum of convex and strongly convex).
- 3. Use the first order optimality condition to show that \hat{x} is a solution of (\mathcal{P}) if, and only if, $A\hat{x} = b$ and there exists $\hat{y} \in \mathbb{R}^M$ such that $-A^T\hat{y} \in \partial f(\hat{x})$. We say (\hat{x}, \hat{y}) is an *optimal pair*. Following the suggestion, the optimality condition gives $0 \in \partial f(\hat{x}) + \operatorname{ran}(A^T)$, which says that $\hat{x} \in V$ $(A\hat{x} = b)$ and $-A^T\hat{y} \in \partial f(\hat{x})$ for some $\hat{y} \in \mathbb{R}^M$.

In the rest of the exam, we shall establish the convergence of a sequence (x_k, y_k) , constructed from an initial point $(x_0, y_0) \in \mathbb{R}^N \times \mathbb{R}^M$, by iterating

$$\begin{cases} x_{k+1} = \operatorname{argmin} \left\{ L(x, y_k) : x \in \mathbb{R}^N \right\} \\ y_{k+1} = y_k + \alpha (Ax_{k+1} - b), \end{cases}$$

with $\alpha > 0$ and $L(x,y) = f(x) + y \cdot (Ax - b) = f(x) + (A^Ty) \cdot x - y \cdot b$, for each $(x,y) \in \mathbb{R}^N \times \mathbb{R}^M$.

4. Why is x_{k+1} well defined? The function $x \mapsto L(x, y_k)$ is closed and strongly convex, because it is the sum of the closed and strongly convex function f, plus an affine function. Hence, it has a unique minimizer.

¹Since f is continuous, we have $\partial(f + \iota_V) = \partial f + \partial \iota_V = \partial f + \operatorname{ran}(A^T)$. You do not need to prove this.

5. Write the optimality condition satisfied by x_{k+1} (this comes from the first subiteration). The optimality condition says that $0 \in \partial L(x_{k+1}, y_k)$. If we show that $\partial L(x_{k+1}, y_k) = \partial f(x_{k+1}) + A^T y_k$, then $0 \in \partial f(x_{k+1}) + A^T y_k$, and thus $-A^T y_k \in \partial f(x_{k+1})$. We shall see that $z^* \in \partial L(x_{k+1}, y_k)$ if, and only if, $z^* - A^T y_k \in \partial f(x_{k+1})$. Indeed,

$$z^* \in \partial L(x_{k+1}, y_k) \iff L(z, y_k) \ge L(x_{k+1}, y_k) + z^* \cdot (z - x_{k+1}) \quad \forall z$$

$$\Leftrightarrow f(z) + (A^T y_k) \cdot z \ge f(x_{k+1}) + (A^T y_k) \cdot x_{k+1} + z^* \cdot (z - x_{k+1}) \quad \forall z$$

$$\Leftrightarrow f(z) \ge f(x_{k+1}) + (z^* - A^T y_k) \cdot (z - x_{k+1}) \quad \forall z$$

$$\Leftrightarrow z^* - A^T y_k \in \partial f(x_{k+1}),$$

as required.

- 6. Show that the dual (\mathcal{D}) of problem (\mathcal{P}) is $\min\{h(y): y \in \mathbb{R}^M\}$, where $h(y) = f^*(-A^Ty) + b \cdot y$. In the notation of the lectures, $g(z) = \iota_{\{b\}}(z)$, and so $g^*(z) = b \cdot z$ (seen in class).
- 7. Compute ∇h , and verify that h is ℓ -smooth, with $\ell = \frac{\|A\|^2}{\mu}$. Using the Chain Rule, we have $\nabla h(y) = -A\nabla f^*(-A^Ty) + b$. Question 1 shows that f^* is $\frac{1}{\mu}$ -smooth. By composition,

$$\|\nabla h(y_1) - \nabla h(y_2)\| = \|A(\nabla f^*(-A^T y_1) - \nabla f^*(-A^T y_2))\|$$

$$\leq \|A\| \|\nabla f^*(-A^T y_1) - \nabla f^*(-A^T y_2)\|$$

$$\leq \|A\| \frac{1}{\mu} \|A^T (y_1 - y_2)\|$$

$$\leq \|A\| \frac{1}{\mu} \|A^T \|\|y_1 - y_2\|.$$

Since $||A^T|| = ||A||$, the conclusion follows.

- 8. Show that the sequence (y_k) satisfies $y_{k+1} = y_k \alpha \nabla h(y_k)$. Question 5 implies that $x_{k+1} = \nabla f^*(-A^T y_k)$, by reciprocity. Question 7 then gives $\nabla h(y_k) = -Ax_{k+1} + b$, and so the second subiteration is equivalent to $y_{k+1} = y_k - \alpha \nabla h(y_k)$.
- 9. For which values of α can we guarantee that the sequence (x_k, y_k) converges to an optimal pair (\hat{x}, \hat{y}) as $k \to \infty$ (express the result in terms of μ and ||A||). First, h attains its minimum at \hat{y} , because it is convex and $\nabla h(\hat{y}) = -A\nabla f^*(-A^T\hat{y}) + b = -A\hat{x} + b = 0$ (we have used reciprocity again). Since h is also ℓ -smooth, the convergence of the gradient method holds for all $\alpha < \frac{2}{\ell} = \frac{2\mu}{||A||^2}$.
- 10. (Bonus) What can you say about the convergence rate of this algorithm? In general, $h(y_k) v^* = \mathcal{O}(1/k)$, where v^* is the dual value, which coincides with the primal value because there is no duality gap. The rate becomes linear if h is strongly convex or, more generally, if it has quadratic growth. The latter happens, for example, if f is smooth.